Direct result on exponential-type operators
نویسنده
چکیده
In this paper, we obtain a direct result and Voronovskaya type asymptotic formula for the exponential-type operators in simultaneous approximation with polynomial growth. In the end, we obtain the recurrence formulae for the central moments, direct results and Voronovskaya type asymptotic formulae for the various mixed summation-integral type operators. 2000 AMS Subject Classification. 41A28, 41A35, 41A36.
منابع مشابه
Multiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions
In this paper, we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity. Using some variational arguments and exploiting the symmetries of the problem, we establish a multiplicity result giving two nontrivial solutions.
متن کاملTrace Formulas and a Borg-type Theorem for Cmv Operators with Matrix-valued Coefficients
We prove a general Borg-type inverse spectral result for a reflectionless unitary CMV operator (CMV for Cantero, Moral, and Velázquez [13]) associated with matrix-valued Verblunsky coefficients. More precisely, we find an explicit formula for the Verblunsky coefficients of a reflectionless CMV matrix whose spectrum consists of a connected arc on the unit circle. This extends a recent result [39...
متن کاملMulti-valued operators with respect $wt$-distance on metric type spaces
Recently, Hussain et al., discussed the concept of $wt$-distance on a metric type space. In this paper, we prove some fixed point theorems for classes of contractive type multi-valued operators, by using $wt$-distances in the setting of a complete metric type space. These results generalize a result of Feng and Liu on multi-valued operators.
متن کاملOn genuine Lupac{s}-Beta operators and modulus of continuity
In the present article we discuss approximation properties of genuine Lupac{s}-Beta operators of integral type. We establish quantitative asymptotic formulae and a direct estimate in terms of Ditzian-Totik modulus of continuity. Finally we mention results on the weighted modulus of continuity for the genuine operators.
متن کاملAgmon-Type Exponential Decay Estimates for Pseudodifferential Operators∗
We study generalizations of Agmon-type estimates on eigenfunctions for Schrödinger operators. In the first part, we prove an exponential decay estimate on eigenfunctions for a class of pseudodifferential operators. In the second part, we study the semiclassical limit of ~-pseudodifferential operators, and exponential decay estimates on eigenfunctions and Briet-Combes-Duclos-type resolvent estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 204 شماره
صفحات -
تاریخ انتشار 2008